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Abstract

A finite element-based formulation for modelling the dynamic behavior of a rotating flexible shaft
supported by a flexible support structure is presented. The coupling effect between the rigid-body rotation
and the flexible deformation of the shaft is considered and represented by non-linear coupling terms in the
mass matrix and forcing vectors in the global system of equations. The rigid-body rotation is treated as
one of the degrees of freedom (d.o.f.) of the entire system. The interaction between the rotating shaft and
the flexible support is modelled by either linear or non-linear springs distributed around the circumference
of the shaft. The coupling between the flexibility of the shaft and the flexibility of the support structure are
considered. The flexible d.o.f. of both the shaft and the support structure are represented as a set of retained
and internal d.o.f. of a Craig–Bampton formulation. An additional transformation is performed when the
rigid-body d.o.f. is coupled with the internal and the retained d.o.f. in a Craig–Bampton basis. The
equations of motion are solved in the time domain using a modified Newmark method for time integration,
in which the Newton–Raphson method is used for handling the non-linear behavior within each time step.
Analyses are performed to validate the new development for different combinations of load condition,
spring type, and rigid-body rotation.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Coupling rigid- and flexible-body dynamics of rotating structures has been studied in the
literature extensively. The interaction between a rotating shaft and its support has also been a
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widely discussed topic. However, the interaction between a rotating flexible shaft and a flexible
support structure at a system level has been very seldom addressed in the literature. A review
summary on related topics is presented first.
Several papers have been presented in the past for modelling the combined rigid- and flexible-

body dynamics of beams. A theory that allows computing small vibrations of a general rotating
beam subjected to prescribed base excitation was presented [1]. A varying cross-section and
material properties were considered for the beam. The effects of centrifugal stiffening and of the
vibration induced by Coriolis forces were included in the formulation. A radially rotating flexible
beam fixed to a rigid body was analyzed [2]. A set of fully coupled non-linear equations of motion
was derived using the extended Hamilton principle. The effect of the coupling terms between
rigid-body and flexural motion on the vibration was investigated. It was identified that for small
values of the ratio between the flexible rigidity and the rigid inertia of the beam, the uncoupled
equations led to substantially incorrect results. A computational procedure for multi-body
dynamics analysis based on a finite deformation beam model was presented [3]. The beam
formulation was based on fully non-linear strain measures that remain invariant with respect to
the rigid-body motions. An inertial reference system was used for the beam dynamics, and the
flexible degrees of freedom (d.o.f.) were computed with respect to a convected reference frame that
rotates with the beam components. The development was targeting computations of the dynamics
of flexible beams that undergo a variety of structural deformations in addition to large overall
motions. The free flexural vibrations of a spinning, finite Timoshenko beam for the six classical
boundary conditions were solved analytically in Ref. [4]. Expressions for the mode shapes and the
natural frequencies were derived. A flexible body dynamic formulation, called the augmented
imbedded geometric approach, was developed for beam structures undergoing large overall
motion in a two-dimensional space [5]. The elastic deformation was characterized as a
superposition of a number of assumed global shape functions. Solutions for cantilevered or
pinned–pinned beams were presented. A method of quadratic components was developed in Ref.
[6] for analyzing rotating flexible structures using a system of non-linearly coupled deformation
modes. The formulation utilizes a non-linear configuration space in which all the kinematic
constraints are satisfied up to the second order. The effects of rotary inertia on the extensional
tensile force and on the eigenvalues of beams rotating about the transverse axis were presented in
Ref. [7]. A method for dynamic simulation of multi-body systems including large-scale finite
element models of flexible bodies was presented in Ref. [8]. An optimal lumped inertia technique
was developed in order to avoid computation of the coupling matrices between the rigid-body
d.o.f. and the flexible d.o.f. in the finite element representation of the flexible bodies. Inertia was
lumped optimally at a subset of nodes of the finite element model, thus, simplifying the evaluation
of the coupling terms in the equations of motion. The equations of motion were derived using a
non-linear formulation that retains second order terms in the strain–displacement relationship [9–
11]. Thus, the effect of all the geometric elastic non-linearities on the bending displacement was
accounted for, without the need to include the high-frequency axial modes of vibration [9]. A
Lagrangian formulation was employed for deriving the dynamic equations for a rotating beam
[10,11] where the flexible d.o.f. were expressed in terms of the analytically derived modal basis for
a beam. The coupling terms between the rigid-body d.o.f. and the flexible d.o.f. were derived from
the modal representation of the flexible d.o.f. A finite element formulation coupling the rigid- and
flexible-body dynamics of a rotating beam was presented [12]. The flexible d.o.f. were represented
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either as physical d.o.f. of beam elements or three-dimensional solid elements (no modal
reduction) or as internal and retained d.o.f. of a Craig–Bampton formulation. The finite element
shape functions of beam elements in a three-dimensional space and the shape functions of solid
elements in a three-dimensional space were utilized to represent the flexible d.o.f. A new
formulation for the coupling matrices and the coupling vectors was presented. In addition, when
the Craig–Bampton formulation was used for reducing the physical d.o.f., a transformation was
developed and imposed on the coupling matrices, in order to account for the relationship between
the physical d.o.f. and the internal and retained d.o.f. of the Craig–Bampton formulation. The
formulation presented in Ref. [12] is also employed in this paper for modelling the dynamic
behavior of the rotating flexible shaft (Fig. 1).
An application area where a rotating shaft is supported by a flexible support structure through

a non-linear connection can be identified in the field of crankshaft-block dynamics. In Ref. [13], a
four-cylinder engine was analyzed. The Reynolds equation was solved for the lubrication film
pressure and the bearing housing structure was approximated by distributed linear springs.
The bearing housing surface was assumed locally rigid such that no local deflection occurs in the
surface of the bearing housing. The rigid surface assumption simplifies the computation and the
contribution to the clearance from the deformed bearing structure is neglected. A ‘mobility
method’ for hydrodynamic analysis of the journal bearings with dynamic loads was presented in
Ref. [14]. The journal center velocity was separated into the oil whirl and oil squeeze terms, while
the dynamic problem was treated as a quasi-static initial-value problem. The mobility method was
applied to the connecting-rod bearing and satisfactory results were obtained [15]. Although the
mobility method is the simplest way to describe the oil film hydrodynamics, it neglects the
important effects of the journal misalignment and its application is limited to short, full journal
bearings with circumferential symmetry. A structural analysis using dynamic substructuring with
Ritz vectors was presented for predicting the dynamic response of an engine crankshaft, based on
the finite element method in Ref. [16]. It is common in crankshaft studies to represent the oil film
hydrodynamics with either the mobility method [17–20] or simple spring–damper combinations
[21–23]. In some cases the oil film is completely neglected [24] due to the complexity of coupling
the lubrication analysis with the crankshaft structural analysis. The Reynolds equation was solved
for the main bearing lubrication problems by finite element method [25,26]. A system model for
analyzing the dynamic behavior of an internal combustion engine crankshaft was described in
Ref. [25]. The model couples the crankshaft structural dynamics, main bearing hydrodynamic
lubrication, and engine block stiffness. The static block stiffness was used neglecting therefore, the
engine block mass inertia and dynamic behavior. Three linear springs were used along the bearing
length to represent the engine block flexibility in both vertical and horizontal planes. The coupling
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between the vertical stiffness and the horizontal stiffness of the same bearing, as well as the
coupling stiffness among different bearings, were neglected. Four d.o.f. (vertical and horizontal
translations and rotations) are used for each bearing to account for the journal misalignment
within the bearing [26]. The effects of oil grooves and oil holes of the bearing on the
hydrodynamic behavior of the oil film were not considered. The Gumbel cavitation condition was
used to save computation time at the cost of computational accuracy.
The work presented in this paper couples a detailed formulation for the rigid- and flexible-body

dynamic behavior of a rotating shaft [12] with the dynamic behavior of a flexible support
structure. The two structures are interconnected through non-linear springs distributed around
the circumference of the shaft at every support location. The new developments presented in this
work are as follows:

(1) Development of a specialized coupling algorithm between a flexible and rigid-body dynamic
formulation of a rotating shaft with the flexible body dynamic equations of the support
structure. The coupling algorithm is based on deriving a relationship between the interaction
forces applied on the two components and the relative clearance between them. In the new
coupling algorithm the flexible d.o.f. for both the shaft and the support structure are
represented as a condensed set of internal and retained d.o.f. of a Craig–Bampton
formulation. The new coupling algorithm incorporates a specialized transformation matrix
between physical and Craig–Bampton d.o.f. at the support in order to properly capture the
interaction between the two flexible members. The overall number of d.o.f. for the coupled
system is significantly reduced compared to a physical representation of the flexible d.o.f.

(2) Development of the combined system of dynamic equations for the shaft and the support
structure. The combined system of equations includes information about the rigid and flexible
d.o.f. of the rotating shaft and the interaction between them. It also includes the flexibility of
the supporting structure and the non-linear coupling between the shaft and the support,
induced by the connecting non-linear springs. Both the coupling stiffness among different
supports and the coupling stiffness between vertical and horizontal plane of the same support
are included in this development.

(3) Development of a DMAP code within NASTRAN for evaluating the FEA-based matrices
which are present in the combined system of dynamic equations.

(4) Application of the Newmark method modified by a Newton–Raphson iteration process
within each time step for solving the combined non-linear system of dynamic equations.

2. Flexible dynamic response of support and shaft structures

Principles of coupling between flexible and rigid dynamics [27] are employed in this paper. The
Craig–Bampton method is an established reduction technique in computational structural
dynamics [28]. In this work, it is employed for reducing the physical d.o.f. for both the flexible
support structure and the flexible rotating shaft. For both components, the d.o.f. are separated
into retained and internal. The retained d.o.f. of the shaft are comprised of the interface d.o.f.
between the shaft and the support structure, while the retained d.o.f. of the support structure
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consist of the d.o.f. where boundary conditions are applied. All the remaining d.o.f. from each
component are placed in the corresponding set of internal d.o.f. The application of the Craig–
Bampton reduction method in the dynamic equations of the flexible support structure and of the
flexible rotating shaft is described in this section.

2.1. Flexible dynamic response of support structure

The dynamic equations of motion for the support structure, modelled by the finite element
method, are

½Mb�f .xbg þ ½Cb�f ’xbg þ ½Kb�fxbg ¼ fFbg; ð1Þ

where ½Mb�; ½Cb�; ½Kb� and fFbg are the mass matrix, damping matrix, stiffness matrix and load
vector, respectively. Superscript b denotes the support structure. The physical d.o.f. in the vector
fxbg constitute the unknown variables.
Due to the large size of the vector fxbg; the Craig–Bampton reduction method is employed. The

initial displacement vector fxbg of Eq. (1) is partitioned into internal d.o.f. fxb
i g and retained

d.o.f. fxb
rg (subscripts i and r; respectively). The vector fxb

rg consists of all the d.o.f. of the support
structure at the locations where the flexible support structure is mounted. The vector fxb

i g includes
all the remaining d.o.f. of vector fxbg: Based on this partitioning, Eq. (1) is rewritten as

Mb
ii Mb

ir

Mb
ri Mb

rr

" #
.xb

i

.xb
r

( )
þ
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ii Cb

ir

Cb
ri Cb

rr
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’xb
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( )
þ

Kb
ii Kb

ir

Kb
ri Kb

rr

" #
xb
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r

( )
¼

Fb
i

Fb
r

( )
: ð2Þ

The fixed-interface eigenvalues o2
j and the corresponding eigenvectors fxjg are computed for the

first J fixed-interface modes. Usually J is much smaller than the number of internal d.o.f. A set of
static (or constraint) modes is introduced in order to account for the influence of the non-zero
values of the retained d.o.f. fxb

rg on the internal d.o.f. fxb
i g: The internal d.o.f. can be expressed as

a linear superposition of the fixed-interface modes and the static modes so that the vector of the
initial d.o.f. fxbg can be expressed in terms of a reduced basis comprised of the retained d.o.f. and
the modal participation factors of the fixed-interface modes; i.e.

fxbg ¼
xb

i

xb
r

( )
¼

X b Y b

0 I

" #
ab

xb
r

( )
¼ ½fb�

ab

xb
r

( )
; ð3Þ

where

½fb� ¼
X b Y b

0 I

" #
; ½Y b� ¼ 	½Kb

ii �
	1½Kb

ir�:

Matrix ½fb� constitutes the modal matrix of the reduced basis of the Craig–Bampton d.o.f.
Substitution of Eq. (3) into Eq. (2) and pre-multiplication by the transpose of ½fb� yields the

following reduced system of equations:

½ %Mb�
.ab

.xb
r

( )
þ ½ %Cb�

’ab

’xb
r

( )
þ ½ %Kb�

ab

xb
r

( )
¼ f %Fbg; ð4Þ
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where ½ %Mb�; ½ %Cb�and %Kb are the reduced mass, damping and stiffness matrices, respectively, and

f %Fbg ¼ ½fb�T
Fb

i

Fb
r

( )

is the vector of the modal forces. The main computational benefit of the Craig–Bampton

reduction process is that the size of the generalized co-ordinate vector ab;xb
r

� �T
is much smaller

than the size of the vector containing the physical d.o.f. fxbg:

2.2. Flexible dynamic response of shaft

Similar to the flexible support structure, the reduced equations of motion for the shaft are
written as

½ %Mc�
.ac

.xc
r

( )
þ ½ %Cc�

’ac

’xc
r

( )
þ ½ %Kc�

ac

xc
r

( )
¼ f %Fcg; ð5Þ

where the matrices ½ %Mc�; ½ %Cc�and ½ %Kc� in Eq. (5) are the reduced mass, damping and stiffness
matrices, respectively, and f %Fcg is the vector of the modal force. A modal matrix ½fc�; which is
comprised of the fixed-interface modes and the static correction matrix from the physical matrices
of the shaft, is utilized to get the reduced equations above (Eq. (5)). The Craig–Bampton d.o.f.

ac;xc
r

� �T
contain the modal participation factors of the fixed-interface modes and the retained

physical d.o.f. included in fxc
rg: For one of the support locations, fxc

rg also includes the z d.o.f. of
the center grid in order to apply an axial boundary condition (see Fig. 2). Finally, the y d.o.f. of
two points on the outer surface of the shaft are also included in fxc

rg in order to impose an
appropriate torsional boundary condition. A right-hand co-ordinate system xyz is used with the
x- and z-axis pointing in the vertical and axial directions, respectively.

3. Coupled rigid and dynamic response of the shaft

An algorithm has been presented in the literature [12] for capturing the coupling effect between
rigid-body rotation and flexible deformation for a rotating flexible shaft. The flexible dynamic
behavior of the shaft is modelled by finite elements. A set of Craig–Bampton d.o.f. is used to

ARTICLE IN PRESS

 
   z 

x 

 y �  

Support 1 Support 2 Support 3 Support 4

Grids on shaft centerline

Fig. 2. Layout of a flexible shaft, its associated co-ordinate system, and its supports.

K. Hu et al. / Journal of Sound and Vibration 267 (2003) 1–286



represent the flexible d.o.f. of the shaft [12]. This algorithm is employed in the present work. The
Craig–Bampton d.o.f., defined in Section 2.2, are utilized. Thus, the vector of all the d.o.f. for the
shaft becomes

y

xc

( )
¼

1 0 0

0 X c Y c

0 0 I

2
64

3
75

y

ac

xc
r

8><
>:

9>=
>; ¼ ½ %Fc�

y
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y
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¼ ½Fc�fqcg; ð6Þ

where

fZcg ¼
ac
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r

( )
; ½ %fc� ¼

1 0

0 fc

" #
¼

1 0 0

0 X c Y c

0 0 I

2
64

3
75:

The shaft equations of motion including the rigid-body rotation effect are given as

Myy Mc
yf

sym: Mc
ff

" #
.y

.xc

( )
þ

0 0

0 Cc
ff

" #
’y

’xc

( )
þ

0 0

0 Kc
ff

" #
y

xc

( )
¼ fQc

vg þ fQc
eg; ð7Þ

where y is the rigid-body rotation, fxcg the all physical nodal flexible d.o.f. of the shaft, ½Cc
ff � and

½Kc
ff � the finite element damping and stiffness matrices, respectively, fQc

vg a quadratic velocity
vector that contains the effects of centrifugal and Coriolis forces, and fQc

eg the vector of
generalized external forces. In Eq. (7) all the terms are expressed with respect to the global co-
ordinate system and are derived from assembling the corresponding element quantities. The
quadratic velocity vector for a finite element is

fQe
vg ¼

	2fegT½Y e�f’ef g’y

½Y e�feg’y2 þ 2½He�f’ef g’yþ ½Y e�fef g’y2

( )
: ð8Þ

The ½Y e�feg’y2 and 2½He�f’ef g’y terms represent the centrifugal and Coriolis forces, respectively.
The term ½Y e�fef g’y2 originates from considering the work done by the centrifugal forces. fef g is
the nodal displacement vector of a finite element and feg is the nodal co-ordinate vector of the
deformed finite element. The vector of generalized external forces for a finite element is

fQe
eg ¼

fegT½N�T½Ay�TfAgfFcg

½N�TfFcg

( )
; ð9Þ

where fFcg includes the externally applied forces on each physical d.o.f. of the shaft finite element
model. In Eqs. (8) and (9), subscripts v and e denote the quadratic velocity vector and the external
force vector, respectively. Assembly of all element vectors fQe

vg and fQe
eg results in the quadratic

velocity vector fQc
vg and the vector of generalized forces fQc

eg; respectively.
Substitution of Eq. (6) into Eq. (7) and pre-multiplication by ½ %Fc�T yields

½ %Mc�f .qcg þ ½ %Cc�f ’qcg þ ½ %Kc�fqcg ¼ f %Qcg: ð10Þ

Eq. (10) is the equations of motion that couple the rigid-body rotation and flexible deformation of
the shaft. The mass, damping and stiffness matrices of the flexible-body, as well as the load vector
are first computed at the element level, based on a three-dimensional solid finite element
formulation. Then, the element matrices and vectors are assembled in order to generate the
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corresponding global matrices and vectors. The reduced equations (10) are formed after the modal
transformation matrix ½ %Fc� is computed.

4. Shaft–support structure interaction

4.1. Support clearance

The rotating shaft is supported by a flexible base structure. The supporting mechanism between
the rotating flexible shaft and the flexible basis is represented by three sets of non-linear springs at
each support location. The non-linear springs are connecting the centerline points of the shaft
with points on the inner surface of the flexible support (Figs. 3 and 4). The non-linear springs offer
support in the radial direction without restricting the rotation of the shaft.
The force of each non-linear spring is a function of the clearance distribution hðz;f; tÞ between

the outer surface of the shaft and the inner surface of the support structure. In this section, a
relationship for h is derived as a function of the generalized co-ordinates of the supporting
structure (Eq. (4)) and the shaft (Eq. (5)).
The shaft deformation is governed by its elastic curve (deformation of its centerline). Due to the

high local rigidity of the shaft, its cross-sectional geometry is assumed to stay circular before and
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after deformation. Since the length of each support is relatively short, the deformation e of the
shaft centerline along each support (see Fig. 3) is considered to be quadratic. For each support,
the deformations e1; e2 and e3 at the left end, middle and right end locations are used to define the
shaft deformation distribution eðzÞ along the support length as

eðzÞ ¼ c1z
2 þ c2z þ c3: ð11Þ

The constants c1; c2 and c3 can be expressed in terms of e1; e2 and e3: Therefore, Eq. (11) can be
rewritten as

eðzÞ ¼ A1ðzÞe1 þ A2ðzÞe2 þ A3ðzÞe3; ð12Þ

where

A1ðzÞ ¼ 2
z

Lb

� �2

	3
z

Lb

� �
þ 1; A2ðzÞ ¼ 	4

z

Lb

� �2

þ4
z

Lb

� �
;

A3ðzÞ ¼ 2
z

Lb

� �2

	
z

Lb

� �
; ð13Þ

where Lb is the length of the support. Assuming temporarily that the support structure is
undeformed, the clearance distribution between the outer surface of the shaft and the inner
surface of the support can be expressed as [26]

hr ¼ c 	 ex cosj	 ey sin j; ð14Þ

where, as shown in Fig. 3,

j ¼ tan	1ðey=exÞ: ð15Þ

The quantity c represents the original radial clearance at the undeformed state, and ex and ey

represent the shaft deformations in the x and y directions, respectively. Substitution of Eq. (12)
into Eq. (14) yields

hr ¼ c 	 ½A1ðzÞ A2ðzÞ A3ðzÞ�cosj

ex1

ex2

ex3

8><
>:

9>=
>;	 ½A1ðzÞ A2ðzÞ A3ðzÞ�sin j

ey1

ey2

ey3

8><
>:

9>=
>;

¼ c 	 ½Tc�fxcg; ð16Þ

where exi
and eyi

; i ¼ 1; 2; 3 are the shaft deformations at node i in the x and y directions,
respectively (see Fig. 3). The transformation matrix ½Tc� in Eq. (16) is

½Tc� ¼ ½A1ðzÞcosj A1ðzÞsinj A2ðzÞcosj A2ðzÞsin j A3ðzÞcosj A3ðzÞsin j� ð17Þ

and

fxcg ¼ f ex1
ey1 ex2

ey2 ex3
ey3 g

T: ð18Þ

The above vector fxcg is a part of the retained d.o.f. vector fxc
rg of the shaft (see Eq. (6)).

A large number of non-linear spring elements are used in the circumferential direction (Fig. 4).
Each non-linear spring element connects a node on the axis of the shaft with a point on the inner
surface of the support. The force–displacement relationship of the spring element depends on the
clearance between the inner surface of the support and the outer surface of the shaft. Since the
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cross-section of the shaft retains its circular shape during the flexible deformation, the force–
displacement relationship depends on the distance between the grid point on the shaft centerline
and the inner surface of the support.
The deformation of any point on the outer surface of the shaft is calculated from Eq. (16) as a

function of the shaft centerline deformations ex and ey at the left end, middle and right end of the
support and as a function of the cylindrical co-ordinates ðj; zÞ: According to Eq. (3), the
deformation ðdx; dyÞ of a physical grid point on the inner surface of the support in the x and y
directions, respectively, is given by

dx

dy

( )
¼ ½X b Y b �

ab

xb
r

( )
; ð19Þ

where f ab xb
r g

T are the generalized co-ordinates of the support structure. Note that any grid
point on the inner surface of the support belongs to the vector of internal d.o.f. fxb

i g: Any point
on the inner surface of the support, which belongs to the finite element mesh of the support
structure, is considered as a physical grid point (see Fig. 4). The number of physical grid points at
any cross-section of the support that are needed to capture the structural deformation of
the support structure, is usually much smaller than the number of non-linear spring elements
required to provide proper support for the rotating shaft. Therefore, a set of calculation grid
points is used as shown in Fig. 4. The calculation grid points are placed at the locations of the
non-linear spring elements and are utilized only for calculating the clearance between the shaft
and the support.
The deformation of a calculation grid point in the x and y directions, respectively, is

given by

dx

dy

( )
¼ Xm Ym

� � ab

xb
r

( )
; ð20Þ

where the transformation matrix ½Xm Ym � is obtained through a cubic spline interpolation from
the transformation matrix ½X b Y b �: The radial deformation d of the support is

d ¼ dx coscþ dy sin c ¼ ½ cosc sin c �
dx

dy

( )
; ð21aÞ

where

c ¼ tan	1 dy

dx

� �
: ð21bÞ

Substitution of Eq. (20) into Eq. (21a) yields

d ¼ ½Tb�
ab

xb
r

( )
¼ ½Tb�fxbg; ð22Þ

where

½Tb� ¼ ½ cosc sin c � ½Xm Ym �; fxbg ¼
ab

xb
r

( )
; ð23Þ
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Based on Eqs. (16) and (22), the clearance h between the shaft and the support is derived in
cylindrical co-ordinates as

hðz;jÞ ¼ hr þ d ¼ c 	 ½Tc�fxcg þ ½Tb�fxbg: ð24Þ

Eq. (24) is utilized for determining the interaction forces that are created by the non-linear springs
between the flexible support structure and the flexible rotating shaft. The interaction forces
provide the coupling mechanism between the two components.

4.2. Combined dynamic equations for the shaft and the support structures

The equations for the flexible dynamic response of the support structure and the coupled rigid
and flexible dynamic response of the shaft have been presented in Sections 2 and 3, respectively.
The dynamic equations for the combined shaft and support structure system are derived in this
section. The interaction between the shaft and the support structure is modelled by non-linear
spring elements (Fig. 4). Combining Eqs. (1) and (7) results in

Mc
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yf 0
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f y Mc

ff 0

0 0 Mb
ff

2
664

3
775

.y
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.xb

8><
>:

9>=
>;þ

0 0 0

0 Cc
ff 0

0 0 Cb
ff

2
64

3
75

’y

’xc

’xb

8><
>:

9>=
>;þ

0 0 0

0 Kc
ff 0

0 0 Kb
ff

2
64

3
75

y

xc

xb

8><
>:

9>=
>;

¼ fQeg þ fQvg þ fQg; ð25Þ

where fQg is the vector of the physical non-linear spring forces applied both on the shaft and on
the support structure. The vector fQg is a function of the clearance h between the shaft and the
support. Superscripts c and b denote the shaft and support structure, respectively. Furthermore,
subscripts y and f denote the rigid-body rotation and the flexible deformation, respectively. The
generalized external forces vector fQeg and the quadratic velocity vector fQvg [12] are

fQeg ¼

Qey

Qc
ef

Qb
ef

8><
>:

9>=
>; ¼

ðxc þ xc
0Þ

TNTAT
y AFc

NTFc

0

8><
>:

9>=
>; ð26Þ

and

fQvg ¼

Qvy

Qc
vf

Qb
vf

8><
>:

9>=
>; ¼

	2ðxc þ xc
0Þ

TY c ’xc ’y

Y cðxc þ xc
0Þ’y

2 þ 2Hc ’xc ’yþ Y cxc ’y2

0

8><
>:

9>=
>;: ð27Þ

Note that in Eqs. (25)–(27),

fxcg ¼ A
NM

e¼1
fef g; fxc

0g ¼ A
NM

e¼1
fe0g; fxc

0g ¼ A
NM

e¼1
fe0g; ½Y c� ¼ A

NM

e¼1
½Y e�;

½Hc� ¼ A
NM

e¼1
½He�;

where the notation A
NM

e¼1
indicates assembly of element quantities over all the elements. The vector

fxc
0g represents the physical nodal co-ordinates of the undeformed shaft, and the vector fFcg
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indicates the external forces on the shaft in the body co-ordinate system. By defining

½F� ¼

1 0 0

0 %fc 0

0 0 fb

2
64

3
75; ð28Þ

the vector of the d.o.f. in Eq. (25) can be written as

y

xc

xb

8><
>:

9>=
>; ¼ ½F�fqg; ð29aÞ

where

fqg ¼ f y x1 xc xb g
T: ð29bÞ

Substitution of Eq. (29a) into Eq. (25) and pre-multiplication by ½F�T yields the following reduced
system of equations:

½ %M�f .qg þ ½ %C�f ’qg þ ½ %K�fqg ¼ f %Qeg þ f %Qvg þ f %Qg: ð30Þ

The reduced mass matrix ½ %M� is given by

½ %M� ¼

Mc
yy ð %Mc

yf Þ1 ð %Mc
yf Þc 0

ð %Mc
yf Þ

T
1 ð %Mc

ff Þ11 ð %Mc
ff Þ1c 0

ð %Mc
yf Þ

T
c ð %Mc

ff Þ
T
1c ð %Mc

ff Þcc 0

0 0 0 %Mb
ff

2
666664

3
777775; ð31Þ

where

ð %Mc
ff Þ11 ð %Mc

ff Þ1c

ð %Mc
ff Þ

T
1c ð %Mc

ff Þcc

" #
¼ ½ %fc�T½Mc

ff �½ %f
c�; ð32aÞ

f ð %Mc
yf Þ1 ð %Mc

yf Þc g ¼ ½Mc
yf �½ %f

c�; ð32bÞ

½ %Mb
ff � ¼ ½ %fb�T½Mb

ff �½ %f
b�: ð32cÞ

The reduced stiffness matrix ½ %K� in Eq. (30) is

½ %K� ¼

0 0 0 0

0 ð %Kc
ff Þ11 ð %Kc

ff Þ1c 0

0 ð %Kc
ff Þ

T
1c ð %Kc

ff Þcc 0

0 0 0 %Kb
ff

2
66664

3
77775; ð33Þ

where the individual reduced matrices are given by expressions similar to Eqs. (32a) and (32c). A

similar expression also holds for the reduced damping matrix ½ %C�: The dimension of matrices ½ %M�;
½ %K�; and ½ %C� is much smaller than that of matrices ½M�; ½K �; and ½C�: This constitutes a significant
size reduction compared to the number of physical d.o.f. present in the two finite element models.
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The generalized external forces vector f %Qeg and the generalized quadratic vector f %Qvg are

f %Qeg ¼ ½F�TfQeg; f %Qvg ¼ ½F�TfQvg; ð34Þ

where fQeg and fQvg are given by Eqs. (26) and (27), respectively.
The generalized force vector f %Qg; produced by the non-linear springs is

f %Qg ¼ ½F�TfQg or f %Qg ¼

0

0

	TT
c

Tb

8>>><
>>>:

9>>>=
>>>;
fQg: ð35Þ

Eq. (35) is derived from the transformation presented by Eq. (24) between the generalized co-
ordinates fqg (see Eq. (29b)) and the distribution of physical clearance h between the outer surface
of the shaft and the inner surface of the support.

5. Numerical solution process

5.1. Numerical integration

In this section the numerical time integration algorithm, developed to solve the reduced system
of equations of motion (Eq. (30)), is presented. The Newmark method [29], modified by a
Newton–Raphson iteration [30] process within each time step, is employed. An iterative loop
within each time step is necessary since the equations of motion contain non-linear terms in the
mass matrix and the forcing vectors. Based on the Newmark time integration, the following
relations hold for the primary variables between successive iterations and successive time steps:

fqgiþ1
nþ1 ¼ fDqgi

nþ1 þ fDqgiþ1
nþ1; ð36aÞ

f ’qgiþ1
nþ1 ¼ a1ðfqgiþ1

nþ1 	 fqgnÞ 	 a3f ’qgn 	 a4f .qgn; ð36bÞ

f .qgiþ1
nþ1 ¼ a2ðfqgiþ1

nþ1 	 fqgnÞ 	 a5f ’qgn 	 a6f .qgn; ð36cÞ

where subscript n indicates the time step and superscript i indicates the iteration number within
the time step. The constants a1 through a6 depend on the Newmark parameters g and b; and the
selected time step Dt:
Due to the non-linear terms in the governing equations, a Newton–Raphson iteration loop is

necessary within each time step during the time integration. The derivatives of the non-linear
terms in the governing equations (Eq. (30)) with respect to the primary variables fqg are required
by the Newton–Raphson iterative solution process. Therefore, expressions for the derivatives of
the following matrices must be derived:

½PF � ¼
@

@fqg
ð½ %M�f .qgÞ; ½B� ¼

@f %Qg
@fqg

; ½P� ¼
@f %Qg
@f ’qg

: ð37239Þ
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After some algebra, the above matrices are expressed as

½PF � ¼

0 2ðfxc
0g þ ½ %fc�fZcgÞ

T½Y c�½ %fc�.y	 f.Zcg
T½ %fc�T½Hc�½ %fc� 0

0 	½ %fc�T½Hc�½ %fc�.y 0

0 0 0

2
64

3
75; ð40Þ

½B� ¼

ðfxc
0g þ ½ %fc�fZcgÞ

TNTAT
y A

@fFcg
@y

fFcgTATAyN½ %fc� 	 2’yf’Zcg
T½ %fc�T½Y c�½ %fc� 0

½ %fc�TNT@fFcg
@y

2½ %fc�T½Y c�½ %fc�’y2 þ ½TdQT � 0

0 0 0

2
66664

3
77775; ð41Þ

and
½P�

¼

	2ðfxc
0g þ ½ %fc�fZcgÞ

T½Y c�½ %fc�f’Zcg 	2ðfxc
0g þ ½ %fc�fZcgÞ

T½Y c�½ %fc�’y 0

2½ %fc�T½Y c�ðfxc
0g þ 2½ %fc�fZcgÞ’yþ 2½ %fc�T½Hc�½ %fc� ’Zcf g 2½ %fc�T½Hc�½ %fc�’y 0

0 0 0

2
64

3
75;
ð42Þ

where

fZcg ¼
x1

xc

( )
ð43Þ

and

½T dQT � ¼

0

	TT
c

TT
b

2
64

3
75 @fQg

@fhg
þ

@fQg

@f ’hg

� �
½ 0 	Tc Tb �: ð44Þ

The final linearized system of equations to be solved for fDqiþ1
nþ1g at the (n þ 1)th time step of the

Newmark time integration can be expressed as

½AK �inþ1fDqgiþ1
nþ1 ¼ fRgi

nþ1; ð45Þ

where
½AK �inþ1 ¼ a2½ %M�inþ1 þ a1½ %C� þ ½ %K� þ ½PF �inþ1 	 a1½P�inþ1 	 ½B�inþ1 ð46Þ

and
fRgi

nþ1 ¼ f %Qgi
nþ1 þ ½ %M�inþ1fR1g 	 ½P�inþ1fR2g þ ½ %C�fR3g 	 ½ %K�fqgi

nþ1: ð47Þ

The vectors fR1g; fR2g and fR3g in Eq. (47) are as follows:

fR1g ¼ a2fqgn þ a5f ’qgn þ a6f .qgn 	 a2fqgi
nþ1; ð48Þ

fR2g ¼ a1fqgn þ a3f ’qgn þ a4f .qgn 	 a1fqgi
nþ1 þ f ’qgi

nþ1; ð49Þ

fR3g ¼ a1fqgn þ a3f ’qgn þ a4f .qgn 	 a1fqgi
nþ1: ð50Þ
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The solution of Eq. (45) provides the primary variable change, within each iteration, of the
ðn þ 1Þth time step. The Newton–Raphson iterative process is repeated until convergence is
achieved. The iteration is considered converged when the maximum absolute value of the increase
of all the non-linear spring forces within an iteration is less than or equal to a certain small value.
Then the solution process advances to the following time step and a new set of Newton–Raphson
iterations is performed. For a steady state excitation, the Newmark time integration is terminated
when the absolute value of the change of every non-linear spring force is less than 1% of the force
itself over an entire cycle.

ARTICLE IN PRESS

Table 1

The physical properties of the finite element models

Support structure Shaft

Number of finite elements 2752 1824

Number of physical d.o.f. 12,807 5775

Number of internal d.o.f. 12,798 5748

Number of retained d.o.f. 9 27

Number of internal modes 150 50

Frequency range of internal modes (Hz) 0B22,361 0B12,743

Natural frequency (Hz) 121 155

Number of Craig–Bampton d.o.f. 159 77

Fig. 5. Q2h relation: ——, non-linear; - - - - - -, linear.
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5.2. Computation of matrices

The finite element commercial code MSC/NASTRAN is utilized to compute the physical mass,
damping and stiffness matrices of the finite element models of both the shaft and the support
structure. A NASTRAN DMAP code is written to generate the transformation matrices in the

ARTICLE IN PRESS

Fig. 6. Reaction forces at the supports for non-linear spring model without rigid-body rotation under static excitations:

——, RX; - - - - - - RY; (a) support #1; (b) support #2; (c) support #3; (d) support #4.

Table 2

The characteristics of analyses

Analyses Load condition Spring type Rigid-body rotation

1 Static Non-linear No

2 Static Non-linear Yes

3 Sinusoidal Non-linear No

4 Sinusoidal Linear Yes

5 Sinusoidal Non-linear Yes

K. Hu et al. / Journal of Sound and Vibration 267 (2003) 1–2816



Craig–Bampton basis ½fb� and ½fc� in Eqs. (3) and (5), respectively. The submatrices in ½ %M�; ½ %C�
and ½ %K� in the reduced system of equations (Eq. (30)) that correspond to the Craig–Bampton d.o.f.
are obtained by pre- and post-multiplying the mass, damping and stiffness matrices associated
with the physical d.o.f. with the corresponding transformation matrices. This operation is
performed in the DMAP code. Certain components of the derivative matrices ½PF �; ½B�; and ½P� in
Eqs. (40)–(42), (½ %fc�T½Y c�½ %fc�; ½ %fc�T½Hc�½ %fc�; fxc

0g
T½Y c�½ %fc�), are also computed in the DMAP code.

A specialized FORTRAN code collects all the arrays, assembles the final system of equations
(Eq. (45)), and solves it for fDqg by the algorithm described in Section 5.1.

6. Analysis of a rotating shaft supported by a flexible base structure

A rotating shaft supported by a flexible structure is analyzed. The non-linear coupling between
the rigid-body rotation and the flexible dynamics of the shaft is included in the analysis along with
the non-linear interaction between the shaft and the support structure. The system has a simple
geometry in order to validate the new development by comparing the results with expected trends
due to the simple geometry.
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Fig. 7. Eccentricity for non-linear spring model without rigid-body rotation under static excitations: (a) support #1;

(b) support #2; (c) support #3; (d) support #4.
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6.1. Finite element modelling of shaft and support structure

As depicted in Fig. 1, the finite element model of the rotating shaft is supported at four
locations by the flexible support structure. The shaft has a length of 1404mm and a diameter of
68mm. The support structure is 1381mm in length and 50mm in height. The length of each one of
the four supports is 25mm and the thickness of each support is 20mm. The material for both the
shaft and the support structure is steel with Young’s modulus of 200GPa and mass density of
7860 kg/m3. The first non-zero natural frequency of the shaft under free boundary conditions is
155Hz and the first non-zero natural frequency of the support structure under free boundary
conditions is 121Hz. The initial radial clearance between the outer surface of the shaft and the
inner surface of the support is equal to 35.687mm.
The finite element model of the base structure is comprised of 2752 finite elements and contains

12,807 physical d.o.f. On the top of the support structure, three nodes are chosen to be the mount
nodes where all the translational d.o.f. are restrained (see Fig. 1). All the physical d.o.f. are
partitioned into 12,798 internal d.o.f. and 9 retained d.o.f. The retained d.o.f. are the d.o.f. of all
the mount nodes. A modal basis containing 150 modes is employed for representing the internal
d.o.f. The 150 internal normal modes cover a frequency range from 0 to 22,361Hz. Thus, the total
number of the Craig–Bampton d.o.f. for the base structure is equal to 159. Similarly, the finite
element model of the shaft is comprised of 1824 finite elements and contains 5775 physical d.o.f.
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Fig. 8. Rigid body (a) rotation angle and (b) r.p.m.
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The latter are partitioned into 5748 internal d.o.f. and 27 retained d.o.f. The retained d.o.f. of the
shaft are the vertical and lateral d.o.f. of all the nodes on the centerline of the shaft inside each
support location, plus the z d.o.f. of the center node inside the third support location, and the two
lateral d.o.f. on the top and bottom nodes at one end of the shaft section. A model basis
containing 50 modes representing the internal d.o.f. leads to a total number of 77 Craig–Bampton
d.o.f. for the shaft. The frequency range covered by the 50 internal normal modes is from 0 to
12,743Hz. The total number of the d.o.f .in vector fqg for the system, including the rigid-body
rotation d.o.f., is equal to 237, which is much smaller than the total physical d.o.f. of the two finite
element models. The physical properties of the finite element models are summarized in Table 1.

6.2. Analysis process

In this example, the interaction between the shaft and the base structure is represented either by
a set of linear springs or by a set of non-linear springs. For the linear springs, the relation between
the force Q and the clearance h is

Q ¼
233	 6517h for hoc0;

0 for h > c0;

(
ð51Þ
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Fig. 9. Reaction forces at the supports for non-linear spring model with rigid-body rotation under static excitations:

——, RX; - - - - - -, RY; (a) support #1; (b) support #2; (c) support #3; (d) support #4.
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where c0 ¼ 0:035687mm is the initial clearance, and Q is in Newtons. The ‘linear’ relationship
expressed by Eq. (51) is pseudo-linear since it represents compressive-only springs. For the non-
linear springs, the force–clearance relation is

Q ¼
388	 18632h þ 217550h2 for hoc0;

0 for h > c0:

(
ð52Þ

The Q 	 h relation is plotted in Fig. 5 for both linear and non-linear springs.
Two forces equal in magnitude with opposite directions are applied in the body co-ordinate

system on a top and on a bottom grid at the end section of the shaft to generate an external
torque. The external torque is applied on the shaft until the desired rotational speed is reached.
Since there is no friction or resisting torque in this application, the shaft will continue to rotate at
a desired constant speed once the external torque is removed. Three vertical loads are applied
along the global X direction at the middle location in between the four supports. Since the non-
linear behavior in the system is introduced from both the coupling between the rigid and the
flexible d.o.f. of the shaft, and from the non-linear springs connecting the shaft and the base
structure at the supports, five analyses are performed in order to gradually demonstrate the
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Fig. 10. Eccentricity for non-linear spring model with rigid-body rotation under static excitations: (a) support #1;

(b) support #2; (c) support #3; (d) support #4.
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validity and the capabilities of the new algorithm. For all the analyses the reaction forces at the
supports and the eccentricity of the center node at each support location are presented. The nature
of the external excitation, the type of springs utilized in the analysis, and the presence of a rigid-
body rotation constitute the characteristics that vary between different analyses. The
characteristics of each analysis are summarized in Table 2.

6.3. Computation results

First, three vertical static loads of 1000N each and no torque are applied on the shaft, while the
non-linear spring connection is considered between the shaft and the base. A time step of
7:4
 10	5 s is employed in this analysis. The reaction forces at the supports with respect to time
are presented in Fig. 6. As expected, since there is no coupling effect between the rigid-body
rotation and the flexible dynamics, all the reaction forces in the lateral direction (Y direction) are
equal to zero. The vertical forces in the X direction reach constant values once the transient effects
are diminished. The sum of all the reaction forces is equal to the sum of all the external loads, and
the expected symmetry is observed in the values of the forces. The eccentricity results are
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Fig. 11. Reaction forces at the supports for non-linear spring model without rigid-body rotation under sinusoidal

excitations: ——, RX; - - - - - -, RY; (a) support #1; (b) support #2; (c) support #3; (d) support #4.
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presented in Fig. 7. The deformation in the Y direction is practically equal to zero and symmetry
is preserved in the X displacements at the supports as expected. In addition, multiplication of the
induced deformation with the appropriate values of the non-linear springs (Fig. 5) results in the
computed values of the reaction forces (Fig. 6). This first analysis verifies that the time integration
algorithm and the non-linear interaction between the flexible shaft and the flexible support
structure have been implemented properly in the developed software.
A constant rotational speed of 4500 r.p.m. is introduced in the first analysis. An external torque

is applied on the shaft until the desired rotational speed of 4500 r.p.m. is reached and then the
torque is removed. Fig. 8 presents the time history for the r.p.m. and the angle of rotation in
the time range when the constant rotational speed is reached. It can be observed that as long as
the torque is applied on the shaft the rotational speed increases linearly while a constant speed is
retained once the external torque is removed. As expected, the angle of rotation varies linearly
with time once the externally applied torque is released. The forces and the eccentricities at the
supports are presented in Figs. 9 and 10, respectively. In this case, both sets of results are
presented over the final 7201 of rotation once convergence has been achieved. As expected,
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Fig. 12. Eccentricity for non-linear spring model without rigid-body rotation under sinusoidal excitations: (a) support

#1; (b) support #2; (c) support #3; (d) support #4.
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symmetry is observed in the results for both the reaction forces and the eccentricities. Due to the
non-linear coupling between the rigid-body rotation and flexible deformation of the shaft, a small
but not negligible eccentricity is introduced in the lateral Y direction. Thus, a small reaction force
is also introduced at the supports in the Y direction. The forces at the supports are constant over
time since the external vertical load is static. In addition, the values of the support forces are
similar to the values computed by the previous analysis without rotation, since the influence of the
non-linear coupling effect between rotational and flexible d.o.f. is expected to be small for a static
external load. This analysis in conjunction with results presented in Ref. [12] demonstrates that
the validity of the coupling between rigid- and flexible-body dynamics has been preserved during
the coupling process between the flexible shaft and the flexible support structure.
In the third analysis, three sinusoidal excitations are introduced in order to replace the three

static loads of the first analysis. The amplitude of all the harmonic loads is equal to 1000N. The
springs between the shaft and the supports are non-linear. No external torque is applied, thus no
rotation is introduced in the shaft. The reaction forces at the supports with respect to time are
presented in Fig. 11. Some transient effects can be observed during the first cycle while a steady
state is achieved after that. As expected, since there is no coupling effect between the rigid-body
rotation and the flexible dynamics, all the reaction forces in the lateral direction (Y direction) are
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Fig. 13. Reaction forces at the supports for linear spring model with rigid-body rotation under sinusoidal excitations:

——, RX; - - - - - -, RY; (a) support #1; (b) support #2; (c) support #3; (d) support #4.

K. Hu et al. / Journal of Sound and Vibration 267 (2003) 1–28 23



equal to zero. The vertical forces in the X direction are also sinusoidal and the sum of the
magnitude of all the reaction forces is equal to the sum of the magnitude of all the external loads.
The reactions at supports one and two are symmetric to the reaction forces at supports four and
three, respectively. This is expected due to the symmetry of the structure and the symmetry of the
external loads. The eccentricity results are presented in Fig. 12. As expected, the deformation in
the Y direction is practically equal to zero and symmetry is preserved in the X displacements at
the supports. This analysis verifies that the time integration algorithm and the non-linear
interaction between the flexible shaft and the flexible support structure are implemented correctly
to compute the dynamic responses of the system.
The non-linear springs of the previous analysis are replaced by linear springs in the fourth

analysis, while a rotational speed of 4500 r.p.m. is introduced. In summary, linear springs connect
the shaft and the support, while sinusoidal loads and a rigid-body rotation are applied on the
shaft. The frequency of the sinusoidal loads is equal to 37.5Hz, which results into one cycle of the
sinusoidal loads within 7201 of rotation of the shaft. Fig. 13 presents the support reaction forces
for the last 7201 of the rigid-body rotation once convergence has been achieved. Since the
connecting springs are linear, smooth reaction forces are computed at all the supports. The
amplitude of each reaction force is equal to the magnitude of the static reaction forces computed
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Fig. 14. Eccentricity for linear spring model with rigid-body rotation under sinusoidal excitations: (a) support #1;

(b) support #2; (c) support #3; (d) support #4.
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by the second analysis. Since there is non-linear coupling between the rigid-body rotation and the
flexible deformation, small harmonic reaction forces in the Y direction for all four supports are
observed, similar to the observations from the second analysis. The eccentricities for the last 7201
of rotation are presented in Fig. 14. Four closed loops are obtained for the eccentricities, which
indicates that in the last 7201 of rotation, steady state has indeed been achieved. This result is
expected since the location of the shaft at the end of a cycle comprises the location of the shaft at
the start of the next cycle, due to the relationship between the frequency of the harmonic
excitation and the rotational speed. The Y deformations are very small but not negligible, which is
consistent with the observation made for the forces in the Y direction. Both the reaction forces
and the eccentricities (Figs. 13 and 14) exhibit very good symmetry as expected.
In the last, fifth analysis, non-linear springs are used to replace the linear springs of the previous

analysis while all other characteristics remain unchanged. The support reaction forces and
eccentricities are presented in Figs. 15 and 16, respectively. Fig. 15 matches Fig. 13 in terms of the
period and the amplitude of the response forces, however some fluctuations are observed in the
reaction forces due to the non-linear nature of the springs. The eccentricity curves in Fig. 16 are
also closed similar to results from the linear springs (Fig. 14). As expected, due to the non-linear
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Fig. 15. Reaction forces at the supports for non-linear spring model with rigid-body rotation under sinusoidal

excitations: ——, RX; - - - - - -, RY; (a) support #1; (b) support #2; (c) support #3; (d) support #4.
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springs the eccentricity loops are not as smooth as the ones resulting from the linear springs
(Fig. 14). Both reaction forces and eccentricities demonstrate symmetry due to the symmetric
nature of the structure and the external loads.

7. Conclusions

A system approach is developed to formulate the dynamic response of a rotating shaft
supported by a flexible support structure. The rigid- and flexible-body dynamics for the rotating
shaft are included in the formulation. The shaft/support interaction is also considered and
modelled by either linear or non-linear springs distributed around the circumference of the shaft.
The support structure and the supports are considered flexible and the contribution from the
flexible deformation to the clearance between the shaft and the support is included in the shaft/
support interaction problem. The Craig–Bampton method is employed to condense the equations
of motion. The final system of equation is non-linear and solved in time domain by the Newmark
method modified by Newton–Raphson scheme. Analyses with different characteristics are
performed and good results are obtained.
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Fig. 16. Eccentricity for non-linear spring model with rigid-body rotation under sinusoidal excitations: (a) support #1;

(b) support #2; (c) support #3; (d) support #4.
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